Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression.
نویسندگان
چکیده
Aquaporins facilitate the uptake of soil water and mediate the regulation of root hydraulic conductivity (Lp(r)) in response to a large variety of environmental stresses. Here, we use Arabidopsis (Arabidopsis thaliana) plants to dissect the effects of salt on both Lp(r) and aquaporin expression and investigate possible molecular and cellular mechanisms of aquaporin regulation in plant roots under stress. Treatment of plants by 100 mm NaCl was perceived as an osmotic stimulus and induced a rapid (half-time, 45 min) and significant (70%) decrease in Lp(r), which was maintained for at least 24 h. Macroarray experiments with gene-specific tags were performed to investigate the expression of all 35 genes of the Arabidopsis aquaporin family. Transcripts from 20 individual aquaporin genes, most of which encoded members of the plasma membrane intrinsic protein (PIP) and tonoplast intrinsic protein (TIP) subfamilies, were detected in nontreated roots. All PIP and TIP aquaporin transcripts with a strong expression signal showed a 60% to 75% decrease in their abundance between 2 and 4 h following exposure to salt. The use of antipeptide antibodies that cross-reacted with isoforms of specific aquaporin subclasses revealed that the abundance of PIP1s decreased by 40% as early as 30 min after salt exposure, whereas PIP2 and TIP1 homologs showed a 20% to 40% decrease in abundance after 6 h of treatment. Expression in transgenic plants of aquaporins fused to the green fluorescent protein revealed that the subcellular localization of TIP2;1 and PIP1 and PIP2 homologs was unchanged after 45 min of exposure to salt, whereas a TIP1;1-green fluorescent protein fusion was relocalized into intracellular spherical structures tentatively identified as intravacuolar invaginations. The appearance of intracellular structures containing PIP1 and PIP2 homologs was occasionally observed after 2 h of salt treatment. In conclusion, this work shows that exposure of roots to salt induces changes in aquaporin expression at multiple levels. These changes include a coordinated transcriptional down-regulation and subcellular relocalization of both PIPs and TIPs. These mechanisms may act in concert to regulate root water transport, mostly in the long term (> or =6 h).
منابع مشابه
Expression of related proteins and aquaporin genes in grape (Vitis vinifera L.) under salinity sress
Due to worldwide increasing of salinity, the identification of genes conferring tolerance to plants is important. The aim of this study was to investigate salinity effects on the expression of three genes-related to proteins and aquaporin in grape (Vitis vinifera L.). Based on screening study on 18 grape genotypes, H6 and Gharashani that showed lower decrease in water potential, leaf area, leaf...
متن کاملGrowth responses and aquaporin expression in grape genotypes under salinity. Nayer Mohammadkhani*, Reza Heidari, Nasser Abbaspour and Fatemeh Rahmani
The effects of salinity on growth, leaf area and water relations of two grape genotypes (Gharashani and Shirazi) were studied under 2-week salinity (25, 50 and 100 mM NaCl). Growth and fresh weights of all plant parts were significantly (p
متن کاملThe effect of salinity stress on Na+, K+ concentration, Na+/K+ ratio, electrolyte leakage and HKT expression profile in roots of Aeluropus littoralis
Among abiotic stresses, salinity has been increasing over the time for many reasons like using chemical fertilizers, global warming and rising sea levels. Under salinity stress, the loss of water availability, toxicity of Na+ and ion imbalance directly reduces carbon fixation and biomass production in plants. K+ is a major agent that can counteract Na+ stresses, thus the potential of plants to ...
متن کاملRegulation of aquaporin-mediated water transport in Arabidopsis roots exposed to NaCl.
The effects of Ca(NO3)2, KF and okadaic acid (OA) on cell hydraulic responses to NaCl were examined in roots of Arabidopsis thaliana wild-type plants and compared with plants overexpressing plasma membrane intrinsic protein PIP2;5. Root treatment with 10 mM NaCl rapidly and sharply reduced cell hydraulic conductivity (L(p)) in the wild-type Arabidopsis plants, but had no effect on L(p) in Arabi...
متن کاملMultiple phosphorylations in the C-terminal tail of plant plasma membrane aquaporins: role in subcellular trafficking of AtPIP2;1 in response to salt stress.
Aquaporins form a family of water and solute channel proteins and are present in most living organisms. In plants, aquaporins play an important role in the regulation of root water transport in response to abiotic stresses. In this work, we investigated the role of phosphorylation of plasma membrane intrinsic protein (PIP) aquaporins in the Arabidopsis thaliana root by a combination of quantita...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 139 2 شماره
صفحات -
تاریخ انتشار 2005